CONCUSSION FAQ

CONCUSSION FAQ

What is a concussion?Concussion Animation

Red areas show where the brain impacts the skull due to the shift in momentum.

A concussion is a medical diagnosis that is induced by biomechanical forces, such as a bump, blow, or jolt to the body, with an impulsive force transmitted to the head.

Our brain is surrounded by a layer of cerebrospinal fluid that generally prevents it from shifting in your skull. However, when a sudden force is applied to your head or your body, the weight and momentum of your brain can cause it to temporarily displace the cerebrospinal fluid, causing the brain to impact the inside of your skull. This impact causes the concussion injury. Medical professionals also refer to concussions as a “mild traumatic brain injury,” or “mTBI.”

Most importantly, a concussion injury can temporarily alter the way your brain functions, and may cause mood swings, headaches, lapses in memory, judgement, concentration, balance, and coordination. Concussions can occur with or without a loss of consciousness, and symptoms may last for a few weeks or months.

Like any other injury, a concussion needs time and rest to heal.

I thought concussions are life-threatening.

Effects of CTE on the brain

Science is still learning about the long-term effects, but concussions are usually not life threatening if treated properly.

Concussions become dangerous when they are not treated, and when compounded by multiple concussions. Recent research has connected the deaths of many pro football players and other athletes that have been found to have chronic traumatic encephalopathy (CTE) at autopsy, a disease that causes degeneration of the brain. Though science is still learning about CTE, this disease is most likely caused by multiple, repeated concussions; a problem that is preventable through the application of proper sports concussion protocols and management.

Left) A normal brain of a 65 year old
Center) The brain of former NFL linebacker who suffered 8 concussions and died at age 45
Right) The brain of a 73 year old boxer who suffered from an extreme form of dementia pugilistica
(Photo credit: WBUR Boston)

Second impact syndrome (SIS) is another life-threatening condition relating to concussions, though extremely rare. SIS is caused when a concussed brain receives a second concussion before the first has healed (healing can range anywhere from minutes to weeks after the first concussion), causing a rapid swelling of the brain. This limits blood flow and can cause cerebral edema and brain herniation.[1]

For the average person and youth athlete, neither CTE or SIS is a concern when proper safety measures are taken. The injured person must rest and recover as prescribed by a physician trained in the management of concussions.

What should I do if I think I have a concussion?

The first and most important thing is to STOP. Sit down, and tell a parent immediately; if playing youth sports, notify your coach or athletic trainer. If you can’t seem to think, ask a teammate to convey that you must be taken out of the game.

Once out of play, immediately seek medical attention from a physician with experience in concussion management.

Common concussion symptoms:

  • Headaches
  • Vomiting
  • Confusion
  • Fuzzy vision
  • Sensitivity to light
  • Feeling foggy
  • Sleepiness/fatigue
  • Balance problems/dizziness
  • Nausea
  • Problems concentrating
  • Loss of consciousness
  • Worsening symptoms

Common signs of a concussion:

  • Trouble recalling facts surrounding incident
  • Appears dazed
  • Repeated vomiting
  • Abnormal fatigue
  • Confusion
  • Irritability
  • Difficulty remembering
  • Difficulty paying attention
  • Slow reaction time
  • Mood, behavior, or personality changes

Will a concussion cause loss of consciousness?

Not directly. A concussion usually involves an alteration of consciousness, but it does not always result in a loss of consciousness. However if a prolonged loss of consciousness does occur, it is very important that the injured person be taken to a medical professional as soon as possible. Likewise, youth athletes must be taken out of play immediately, regardless of their conscious state.

How do I recover from a concussion?

It is critical that you give your brain time to heal. To do so, you must follow a recovery protocol to mentally and physically rest. Do not exert yourself or play sports, especially contact sports. You should rest your mind and avoid texting, video games, computer use, and watching television for the first few days after injury – screens can affect your recovery.

Depending on the severity of your concussion, your doctor might write students academic accommodations. Academic accommodations request that your school/teacher provide a reduced work load, extra time for exams, and deadline extensions to compensate for the alteration in brain processing from your injury.

Once you are asymptomatic (which means all of your symptoms have disappeared) your doctor will advise you to begin the “gradual return to play” process. However, if any symptoms re-appear, stop playing, consult your athletic trainer and physician, and restart the recovery protocol.

I am a youth athlete. How long must I stay out of play?

You should stay out of play as long as your doctor tells you to. This should be at least one week in order to complete the gradual return to play checklist without any symptoms, though severe concussions (particularly those caused by playing through a game with a concussion) can last for weeks or months depending on the severity. Every concussive event is different, even for the same person.

Where should I go to get checked up and cleared?

Immediately following the injury – depending on severity – a trip to the emergency room can rule out any life-threatening injuries.

Afterwards, you should see a physician trained in the management of athletic concussions for a checkup, and follow concussion recovery protocols until asymptomatic. Once asymptomatic, the athlete should follow up with a physician with experience in concussion management in order to get cleared for gradual return to play.

Make an appointment at our clinic

Are concussions common?

An estimated 1.6 to 3.8 million[2] sports-related concussions occur each year. Recent research suggests that this number is significantly higher due to underreporting of injuries, though recent reporting has increased exponentially.

Does concussion risk vary by gender?

Research published in the Journal of Athletic Training found that females are twice as much at risk for concussions because of underdeveloped neck musculature. For high school sports, football has the most concussions reported at 40.5%, followed by girls’ soccer (21.5%) and boys’ soccer (15.4%)[3].

Are there laws governing concussions?

As of January 30th, 2014, all 50 states and Washington, DC have passed youth sports concussion related legislation, known as “Return to Play” laws. Florida’s legislation requires immediate removal from practice or competition for a suspected concussion and written medical clearance to return to playing sports.[4][5]

Your treatment plan must also comply with the legislation in your state and the requirements of your respective organization. Most organized sports governing bodies also have their own concussion policies and regulations. These organizations include state high school athletic associations, clubs, leagues, and park organizations.

Source

A Countywide Program to Manage Concussions in High School Sports

A Countywide Program to Manage Concussions in High School Sports

in Contemporary Sports Issues, General, Sports Studies and Sports Psychology

Submitted by Gillian Hotz Ph.D, Ashlee Quintero, BSc, Ray Crittenden, MSc, Lauren Baker, David Goldstein and Kester Nedd, DO

ABSTRACT
Background: With the national spotlight on concussions sustained in contact sports, this Countywide Concussion Program addresses the unique challenges presented to public and private high schools in order to increase concussion awareness, identification, and management.

Methods: The Miami Concussion Model (MCM) was developed with a standard protocol that includes; formation of a task force of stakeholders, concussion education and training to coaches, athletic trainers, and athletes; baseline ImPACT™ testing, the facilitation of ‘return to play’ decisions with effective medical treatment, and the development and implementation of a concussion injury surveillance system.

Results: The program has been successfully implemented in about 40 high schools in Miami-Dade County (MDC) over the last two years. The MCM provided baseline testing for 18,357 student-athletes, trained over 100 coaches and 40 athletic trainers, and most recently provided concussion education to high school football athletes. Since 2011, the concussion clinic has treated a total of 216 high school athletes and the surveillance system tracked 198 student athletes.

Conclusion: The MCM aims to assist in the prevention of concussions, improve player safety limiting school liability by providing a countywide concussion management program. The program is funded primarily by private donations and the support of multiple stakeholders. With about 48 States passing concussion legislation, the MCM can be used as a model for other counties to address the need for a concussion management program.

Applications in Sport: Schools with athletic programs need to implement a system to correctly manage and prevent concussive injuries both to protect their athletes and to minimize liability. The development of the MCM and protocol with the support of the leadership of the School Board allows for high schools to take a proactive approach in improving concussion management for their athletes.

INTRODUCTION
With the national spotlight on concussions in sports, key stakeholders worked together to develop a concussion model, a standard countywide concussion care protocol, and a surveillance system to improve concussion management and to reduce the incidence of sports¬-related concussions at the high school level. In 2011, a student-¬athlete who had sustained multiple concussions playing soccer spearheaded the initiative to create a taskforce to address the management of concussions. A taskforce was implemented consisting of physicians, community leaders, school officials, and concerned parents. The combination of these stakeholders’ backgrounds created a diverse team with unique resources to create a program utilizing a public health approach toward preventing concussions. The Miami Concussion Model (MCM) was designed as a 3-E model (Education, Execution, and Evaluation) outlining phases for program development, implementation, and evaluation (Figure 1).

Figure 1
Screen Shot 2014-03-07 at 9.08.11 AM

The program has been successfully implemented in 40 high schools in Miami-Dade County (MDC), baseline testing 18,357 student-athletes over two years. The goals of the MCM are to provide a comprehensive and centralized concussion care program to 1) increase concussion awareness and identification through education and training; 2) facilitate the return to play decision with effective medical treatment which includes baseline neurocognitive testing; and 3) implement a standardized concussion care protocol and concussion injury surveillance system to assist in the prevention of concussions, improve player safety, and limit school liability.

Traumatic brain injury (TBI) is the leading cause of injury¬-related death in children and young adults in the United States and other industrialized countries. A concussion is a type of brain injury caused by a bump or blow to the head that alters cognitive functioning. The Center for Disease Control and Prevention (CDC) has estimated annual sports¬ related concussion incidence is between 1.6 and 3.8 million (Centers for Disease Control, 2010; Coronado et al., 2011; Leibson et al., 2011). Sports is the second leading cause for TBIs after motor vehicle accidents among people aged 15 to 24 years old (Nanda et al., 2012). Studies demonstrate short and long term effects of concussions can be serious and occasionally fatal (Daneshvar et al, 2011; Iverson et al., 2006; Lovell et al, 2003). Most recent public concern has focused on the relationship between Chronic Traumatic Encephalopathy (CTE), a progressive degenerative disease of the brain found in an athlete’s brain post-¬mortem, with a history of multiple symptomatic concussions as well as asymptomatic, repeated sub¬-concussive hits to the head (McKee et al., 2009). As a result of high-profile athletes reporting injuries there has been increased media attention emphasizing the effects of mild traumatic brain injury and concussions in athletes. Beginning in 2009, 48 states nationwide have passed youth sports concussion legislation that requires athletes to be immediately removed from play if a head injury is suspected and then cleared by a licensed medical professional before returning to sport after a head injury.

METHODS
In order to prevent and reduce the consequences of injuries, the CDC recommends the public health approach; describing the problem, identifying the risk and protective factors, developing and testing preventative interventions and strategies, and ensuring widespread adoption of the interventions and strategies (Sleet et al., 2003). This model was used to develop the MCM, a 3E model that includes components of Education, Execution, and Evaluation. The model and the protocol presented in this paper are now being implemented across the county.

Education
The issue of sports related concussions was identified within the MDC community by the University of Miami Concussion Program (UMCP) obtaining accurate injury rates. The number of affected individuals was calculated based on the participation in contact sports in the community. In M¬DC there are 36 public high schools with approximately 15,000 students participating in interscholastic sports annually. M¬DC public high schools had an enrollment of 102,582 students for the 2011¬ and 2012 school years; therefore 14.6% of public high school students in MDC participated in sports and were affected/at risk for sports¬ related concussions. This excluded the students that participated in physical education courses who were also at risk (Miami-¬Dade Public Schools Research Services [M-DPSRS], 2011). As perceptions regarding concussion started to change in the county and awareness increased due to media attention, M¬DC school officials became open to discussion to improve their concussion management plan. This allowed for meetings with key personnel involved with high school athletes (athletic directors, coaches, athletic trainers, physical education teachers, etc.). These meetings were very important in that they revealed their knowledge and their experience with sports concussions and their thoughts of how to improve management for their athletes.

Review of existing sports concussion management protocols and resources in the community was conducted to 1) determine if any current concussion management programs or plans existed, 2) obtain information from local emergency rooms and physicians’ offices relevant to concussion planning, and 3) identify how those individuals managed concussion in youth sports and where they were referring their patients for specialized follow-¬up care. That information taken from multiple sources (leagues, parks, schools, state laws, and local medical care centers) was summarized regarding the issue of sports concussions within the community. For example, most high school aged (13-19 years) students in the community participated in interscholastic sports versus park recreational leagues; the majority of injuries occur between the months of August and January during football season because football teams have the largest number of athletes. Being well informed on the issues of concussion management allowed a focused approach toward building a concussion care program for the community via the MCM.

The UMCP was then able to identify the weaknesses in each phase of concussion management and propose resolutions to strengthen each area. A community task force was developed that consisted of key stakeholders from different agencies involved in concussion management. This included school board representatives, first responders to the injury, medical providers, and community leaders.

Most recently UMCP has partnered with the Sports Legacy Institute and joined their community education program through their Sports Legacy Institute Community Educator Program (SLICE). SLICE is a fun, interactive concussion education program that teaches young student-athletes about concussions through discussion, video, and interactive games (Sports Legacy Institute [SLI], 2013). Currently, a modified version of SLICE, which is a 30-minute power point presentation, is being used to educate high school football players.

Support and approval for concussion planning was obtained from the various constituencies for the community task force and was followed up with research of each district, county, and state policy pertaining to sports concussions for high school athletes. Verification of regulations was implemented and continuously updated to allow consistency with the newest management protocols as outlined in the Consensus Statement from the International Committee on Sports Concussions (McCrory et al., 2008). Legislation has passed in 48 states across the country requiring student athletes to receive written medical clearance before returning to the playing field. These state laws include the requirement that athletes, parents, and coaches receive concussion education. Prior to 2011 limited regulations existed in the MDC community, so the UMCP collaborated with school board officials to formulate a plan to involve relevant personnel from the athletic department. In MDC, the school board’s Director of Athletics assisted with the planning and implementation as one of the critical task force members, her cooperation and support ensured feasibility and assistance with the school board approval. The UMCP worked directly with the schools and school board to improve the success of developing a standard program that could reach all athletes. In M¬DC Public Schools, each school has a certified athletic trainer (ATC) that works full-time at his/her school and is an employee of the School Board. The unique qualifications of ATCs made them the most appropriate person to collaborate with upon implementing the program in each school. The Director of Athletics for MDC public schools supported these efforts and began communication between UMCP and the ATCs. Even where certified athletic trainers are not readily available, athletic coaches or the school nurse were trained to implement the program. In March 2011 the ATCs and Coaches were provided with a comprehensive Concussion Management and Training Workshop by UMCP.

Finally, a plan was developed for funding and sustainability of the program. The first step was to review any existing funding mechanisms and potential new resources to support the implementation of a comprehensive management program. The plan included 1) staff/operations costs and baseline neurocognitive testing for all student athletes; and 2) implementing the centralized concussion care program as an investment in the safety of athletes that improves the prevention of concussions¬¬ by facilitating ongoing training and education which reduces liability when administered properly. However, in most public school systems budgets do not include a plan for concussion prevention/care, and funding can be difficult to find. The cost of operating such a program will vary depending on the size of the school district and the structure of the program. The process described (see Figure 2) demonstrates the development of an infrastructure for operation of the model. In MDC it was feasible for the UM Concussion Program under the KiDZ Neuroscience Center (KNC), which is a center devoted to improving the quality of care and advances in research and prevention of traumatic and acquired brain and spinal cord injury in children to partner with the MDC Public School Board. Additionally, since the MDC school board employs their own ATCs, training was provided for baseline neurocognitive testing of athletes playing contact sports and was added to their existing duties. In M¬DC, ImPACT™ (Immediate Post-Concussion Assessment and Cognitive Testing) is utilized because it is an evidence ¬based assessment that has been widely used and validated (Schatz et al., 2006). ImPACT™ is a 20-minute online computer exam consisting of five sections that assess memory, reaction time, non-verbal and verbal problem solving, and attention span. Baseline ImPACT™ scores are valid for four years for each athlete during their high school years, which reduces the annual cost of purchasing new exams. UMCP receives a charitable donation from a private high school annually that covers the price of purchasing baseline tests by volume for reduced pricing for all 36 public high schools in the county. The private schools buy their own licenses. The Director of the UMCP is also a Credentialed ImPACT™ Consultant with training that coordinates all the baseline testing. If an athlete sustains a concussion then they are retested by the ATC within 48-72 hours and the Director of the UMCP is notified and recommendations made and clinic visits scheduled.

Figure 2
Screen Shot 2014-03-07 at 9.08.59 AM

Execution
Once approval by the different agencies was granted, the execution phase of the MCM was initiated. The Countywide Concussion Care Protocol was developed to create a standard protocol for the concussion management of high school athletes (Figure 2). The first phase involved training and educating appropriate staff about concussions in sports and also how to administer baseline neurocognitive tests. The ATCs and school nurses were educated about concussion management and worked closely with an expert in concussion management to provide accurate information and to respond to questions. Prior to this program the Director of the UMCP taught a mandatory educational and training workshop for ATCs and Coaches that was expanded and continues. Other school professionals like nurses that may be involved in management of care for student athletes are trained annually on the concussion protocols as guidelines and recommendations change. In MDC, sideline assessment requirements include the Sports Concussion Assessment Tool 2 (SCAT2) and the King-Devick Test. The SCAT2 represents a standardized method of evaluating athletes aged 10 and older for concussion injuries through a series of cognitive questions and physical assessments (McCrory, 2009). The King-Devick Test is a rapid visual screening tool that is used to confirm suspected concussions, the athlete is asked to read numbers from the cards in sequence without errors as fast as possible. The athlete’s post-injury performance is compared to their pre-season baseline result (Galetta et al., 2011). Both of these assessments are utilized on the sidelines to verify suspected concussion symptoms and provide an objective confirmation of the injury. Protocols and guidelines are reviewed and updated annually to be consistent with national and state requirements and the latest medical research recommendations. During the pre¬-season training workshop by the UMCP, ATCs were trained on evaluating and administering baseline assessments to athletes. Two assessments require baseline results, ImPACT™ and the King-Devick test; athletes are tested prior to the start of contact drills to obtain accurate baseline results. In MDC, a list of testing guidelines was created for the school staff to reference throughout the year. After all athletes are tested, the ATCs, coach, or nurse contact the Director of the UMCP to verify that all baseline tests are valid before athletes are introduced to contact activities.

The MCM incorporates medical evaluation of the concussed athlete. UMCP works in conjunction with local physicians and other psychologists to assess the physical and neurocognitive consequences of the injury. The athletes receive comprehensive medical care, which is mandatory for clearance to play. UMCP provides a comprehensive concussion management program assessing the athlete’s medical, cognitive, and psychological well being during the recovery process. The pressure that athletes have to return to their pre¬-morbid academic and athletic levels can be overwhelming for an adolescent, particularly when their peers cannot understand the extent of their injury. The ImPACT™ neurocognitive computer test results coupled with a thorough clinical assessment aids the medical team in making an accurate prognosis and providing the athlete with confidence when returning to play. The UMCP medical team works directly with the ATCs to communicate the status of the athlete’s recovery.

Evaluation
When evaluating the model UMCP researchers examined individual school compliance as well as overall effect of program implementation on head injury rates in the county. The concussion protocol dictates that a school staff member will document the athlete’s immediate symptoms and details of the injury incident, which can be seen in Figure 2 (Evaluation). The ATC, coach, or nurse is to document each incident and keep accurate records, including: sideline assessment results from the Sports Concussion Assessment Tool 2 (SCAT2) or the King¬-Devick test (McCrory et al., 2008). Within 24¬-72 hours of the injury the athletic trainer, coach, or nurse would have administered a post¬-injury test to the injured athlete, reported the incident to the program coordinator and sought medical attention for the athlete.

Various methods to collect data can be utilized including tracking patients in local clinics and emergency departments, integrating an injury reporting system and continued follow-¬up with the school personnel. In MCM the records of concussion patients treated at UMCP are collected and an online concussion injury surveillance tool has been developed. The online injury¬ reporting form collects relevant details of the concussive incident including age, gender, sport, mechanism of injury, history of concussion, equipment that was worn at the time of injury, and geographical region within the county. It is necessary to collect accurate data surrounding each injury to better identify the specific issues occurring whether it is equipment failure, environmental, incorrect coaching, etc. The involved agencies collaborated to evaluate the effectiveness of the program after its implementation.
The Florida State Legislature passed House Bill 0291 in July of 2012 to ensure there are policies relating to the nature and risk of concussion and head injury in youth athletes requiring informed consent for participation in practice or competition and removal from practice or competition under certain circumstances, and written medical clearance to return. Pre-Legislation data from concussions reported in High School Sports based on age, sex, and ethnicity were obtained through the surveillance system. The pre-legislation results for all sports at 36 MDC High Schools for the 2010-2011 school year reported 32 concussions. For the following school year 2011-2012, still reported as pre-legislation, 40 concussions were reported. The most significant increase in reporting was for the school year 2012-2013, which was post-legislation data obtained after the passing of HB 0291 in July 2012. The 2012-2013 school year reported 166 concussions, a four-fold increase in concussion reporting. (Table 1)

Table 1. Surveillance Data
Concussion reporting for all sports in 36 Miami-Dade County Public High Schools
Screen Shot 2014-03-07 at 9.10.10 AM

The marked increase in reporting after the implementation of HB-0291 is attributed to increased awareness and the addition of a standard management protocol. The program has been successfully implemented in about 40 high schools (36 public and 4 private) in MDC. The MCM provided ImPACT™ baseline testing for 18,357 student-athletes, trained over 100 coaches and 40 athletic trainers, and most recently provided concussion education to high school football athletes. Data obtained from the UMCP clinic reports that in 2010, prior to the implementation of the standard protocol, 44 high school athletes from both public and private schools were treated for sports concussions during the fall athletic season (August-¬January). In 2011, post¬-implementation of the model, 61 athletes sought treatment for concussions. During the 2012 fall season and up to the present time, 155 ¬athletes were treated in the same clinic for a sports-¬related concussion, which included all sports for a total of 216 athletes treated. There are some athletes that return to their pediatricians or family doctors for their care and for clearance for return to play however the ATC at their school still follows the protocol and will enter data in the surveillance system. The chief complaints that athlete’s reported during clinic visits included; headaches, dizziness, fatigue, visual disturbance, and concentration issues. Most of these physiological symptoms were accompanied by cognitive deficits, which affected their academic performance. The clinic has developed a protocol for gradual return to play which includes exertion activities from low to high as tolerated and also return to class and academic work with specific accommodations. The University subjects’ review board approvals were obtained prior to collecting any data. The majority of the concussive injuries occurred in an MDC high school setting or at a school¬ sanctioned athletic event. In 2012, 198 high school concussion injuries were reported through a concussion injury surveillance system that the ATCs have been trained to use, 183 (92.4%) of those reported incidences occurred at a school or at a school sponsored athletic event.

DISCUSSION
The MCM presented here was implemented in MDC in 2011. From this pilot evaluation of the model it was determined to be effective in increasing the number of concussions identified, reported, and also treated at the UMCP clinic. Also a centralized standard protocol was now in place across the county allowing for better communication and compliance for reporting by the high school ATCs. This model, or a modified version, can be implemented to centralize concussion management in other counties and communities across the country. There is a unified need in every community for the development of concussion care protocol with the ever-increasing awareness and liability involved in high school sports.

CONCLUSION
Concussions affect all aspects of the student-¬athlete and therefore management of an injured athlete should be comprehensive and include psychological assessments, neurocognitive testing, academic support, and a physiological examination. A comprehensive program that combines education, baseline neurocognitive testing, clinical care and evaluation is believed to be most beneficial to maximize the effectiveness of such a program. The MCM outlined in this paper is designed to be a guideline that can be adapted to the needs of different communities. Data will continue to be collected and analyzed to evaluate the effectiveness of this program. With limited coordination and low cost for baseline testing it is important to have a concussion management program in place.

BARRIERS TO IPLEMENTATION
Since the MCM was developed with the consensus of key stakeholders, there has been little resistance. The model presented has recently been developed and is going through continual evaluation. While the preliminary data seems promising, we will continue to evaluate this model over the next few years. Since the identification of a concussive event relies on the reporting of injuries by the ATCs at each high school their support and implementation of the program is critical in the success of the program. The staff of the UMCP suspected that the number of concussive injuries was still under¬reported in the first year, however now with the passing of the Concussion Legislation in July 2012, reporting has increased. Also with continued training and education workshops and the centralized system this should improve compliance. Since MDC has ATCs that all work for the school board it is much easier to implement such a program. In other cases where the ATCs work for medical or rehab facilities they need to be compensated for their time in supervising and administering of the baseline ImPACT™ testing. If they are not able to participate a school nurse could be trained. Funding for the MCM will continue through a commitment made by the fundraising efforts of one private school in MDC, however there are other ways to budget for such a program; Parent¬ Teacher Association fundraisers, booster club events, corporate support, local sports teams sponsorship, or a nominal fee inclusive in yearly athletic dues.

APPLICATIONS IN SPORTS
The increased awareness of concussions and their effects on the developing brain have created a culture change in sports. Schools with athletic programs need to be encouraged to implement a system to correctly manage and prevent concussive injuries both to protect their athletes and to minimize liability. The development of the MCM and protocol with the support of the leadership of the School Board allowed for the high schools in MDC to take a proactive approach in improving concussion management for their athletes. The Baseline neurocognitive computerized testing ImPACT™ provided an objective measure that with the clinical exam assisted in determining a beneficial recovery plan for the athlete and providing a plan for the school to limit their liability while better caring for their student-¬athletes while identifying and preventing injuries.

ACKNOWLEDGMENTS
The authors would like to thank Dr. Kaplan and the UHealth Sports Medicine Clinic and Staff, also Cheryl Golden, Director of Athletics for the Miami-Dade County School Board and all the Miami-Dade County Certified Athletic Trainers. We would also like to thank Ransom Everglades School, David Goldstein and the Goldstein Family for their initial and continued support of the UMCP.

REFERENCES

1. Centers for Disease Control. (2010). National Center for injury prevention & control: Traumatic brain injuries. Heads up: Concussions in high school sports. Retrieved from http://www.cdc.gov/concussion/sports/index. html

2. Coronado, V.G., Xu, L., Basavaraju, S.V., McGuire, L.C., Wald, M.M., Faul, M.D.,…Hemphill, J.D. (2011). Surveillance for traumatic brain injury-¬related deaths–¬¬United States, 1997¬-2007. Morbidity and Mortality Weekly Report Surveillance Summaries, 60(5), 1¬-32.

3. Daneshvar, D.H., Riley, D.O., Nowinski, C.J., McKee, A.C., Stern, R.A., & Cantu, R.C. (2011) Long¬term consequences: Effects on normal development profile after concussion. Physical Medicine and Rehabilitation Clinics of North America, 22(4), 683-700.

4. Galetta, K.M., Brandes, L.E., Maki, K., Dzuenuabwucz, M.S., Laudano, E., Allen, M.,…Balcer, L.J. (2011). The King¬-Devick test and sports related concussion: Study of a rapid visual screening tool in a collegiate cohort.Journal of Neurological Science, 309(1¬2), 34¬-39

5. Iverson, G.L., Brooks, B.L., Collins, M.W., & Lovell, M.R. (2006). Tracking neuropsychological recovery following concussion in sport. Brain Injury, 20(3), 245-¬252.

6. Leibson, C.L., Brown, A.W., Ransom, J.E., Diehl, N.N., Perkins, P.K., Mandrekar, J., & Malec, J.F. (2011). Incidence of traumatic brain injury across the full disease spectrum. Epidemiology. 22(6), 836-¬844.

7. Lovell, M., Collins, M., Iverson, G., Field, M., Maroon, J., Cantu, R., & Podell, K. (2003). Recovery from mild concussion in high school athletes. Journal of Neurosurgery, 98(2), 296-¬301.

8. McCrory, P. (2009). Sport concussion assessment tool 2. Scandinavian Journal of Medicine and Science in Sports, 19(3),452-452.

9. McCrory, P., Meeuwisse, W., Johnston, K., Dvorak, J., Aubry, M., Molloy, M., & Cantu, R. (2009). Consensus statement on concussion in sport – the 3rd international conference on concussion in sport, held in Zurich, November 2008. Journal of Clinical Neuroscience, 16(6), 755-¬763.

10. McKee, A., Cantu, R., Nowinski, C., Hedley-Whyte, E.T., Gavett, B.E., Budson, A.E.,…Stern, R.A. (2009). Chronic traumatic encephalopathy in athletes: Progressive tauopathy following repetitive head injury. Journal Neuropathology and Experimental Neurology, 68(7), 709-735.

11. Miami-¬Dade Public Schools Research Services. (2011) Statistical Highlights, 2010-2011[Data File]. Retrieved from http://home.dadeschools.net/files/Statistical Highlights.pdf.

12. Nanda, A., Kahn, I.S., Goldman, R., & Testa, M. (2012). Sports Related Concussions and the Louisiana Youth Concussion Act. The Journal of the Louisiana State Medical Society, 164(5), 246-250

13. Schatz, P., Pardini, J.E., Lovell, M.R., Collins, M.W., & Podell, K. (2006). Sensitivity and specificity of the ImPACT Test battery for concussion in athletes. Archives of Clinical Neuropsychology, 21(1), 91-99.

14. Sleet, D.A., Hopkins, K.N., & Olson, S.J. (2003). From Delivery to Discovery: Injury Prevention at CDC. Health Promotion Practice, 4(2), 98-102.

15. Sports Legacy Institute. SLI Community Educators (2013). Retrieved from http://sportslegacy.org/education/slice.

Kids and concussions: UM, Miami-Dade pioneer study of young athletes

Kids and concussions: UM, Miami-Dade pioneer study of young athletes

Ransom’s Goldstein has made an Impact – Miami Herald

Ransom’s Goldstein has made an Impact – Miami Herald

The Miami Herald

Ransom’s Goldstein has made an impact

BY WALTER VILLA
Special to The Miami Herald

After suffering from a few concussions, David Goldstein of Ransom Everglades wears headgear for protection during soccer games on November 14, 2012.

A 25-yard header is rare, but even more so when the player who hit it is a high school senior who has suffered three concussions and is only a couple of years removed from thinking he would never play soccer again.Ransom Everglades defender David Goldstein, who plays with a rugby helmet for protection, scored the far-out header last Friday, catching the University School goalie off his line and snapping a 1-1 tie in the 65th minute of a 3-1 win.

“He just powered that ball,” Ransom coach Dave Villano said.

Goldstein’s real power, though, is what he can do with what’s inside his head.

A straight-A student who has applied to Princeton University, Goldstein helped the Florida legislature pass a law — senate bill 256 — that sets guidelines for the treatment of Florida youth athletes with head injuries.

After the bill became law, Gov. Rick Scott came to Miami last month and met with Goldstein before performing the ceremonial signing.

Goldstein also raised $35,000 to provide ImPACT baseline concussion testing for all athletes at Miami-Dade County public schools. Once an athlete suffers a blow to the head, his post-injury tests are compared to his baseline, or pre-injury, exams.

“David singlehandedly made sure that every athlete in our county can be ImPACT tested,” said GMAC instructional supervisor Cheryl Golden, who added that Ransom has committed to perpetuating the fund, spending roughly $7,000 per year to test all incoming freshman athletes in the county.

Goldstein’s history with brain trauma began while playing soccer in the sixth grade, when he was hit in the head with a booted ball at close range. A head-to-head collision in the eighth grade became his second concussion.

His third happened as a freshman at Ransom, playing a district final against Gulliver. Goldstein had already gotten rid of the ball when a Gulliver senior crashed into his head violently.

“You can see on the game tape that instantly my hands went to my head,” Goldstein said. “But I didn’t realize the severity of the injury at the time. Now, I know I should’ve come out of the game right away.

“I’m lucky I didn’t get hit again. When a youth athlete gets a concussion and isn’t removed from play and then gets another blow to the head, that’s second-impact syndrome. There’s a potential of brain damage and even death.”

Goldstein’s symptoms persisted for nearly four months, and it got so bad that he would often have to take naps at the nurse’s office during school hours.

Several doctors told Goldstein there was nothing they could do to help, but that changed when he visited with the team at University of Miami Sports Medicine.

“They told me that a lot of my problems were caused by a balance issue and that there was medicine that could help me,” Goldstein said. “They told me I could play soccer again if I took the proper precautions.”

Inspired by his doctors, Goldstein decided to make sure that other young athletes don’t go through a similar ordeal.

After raising the money to fund the baseline tests in Miami, Goldstein was contacted by the Florida Brain Injury Association. They wanted him to join their effort to increase brain injury awareness and protection.

Goldstein made several trips to Tallahassee to speak to state legislators. The bill met opposition, however, and was defeated in May of 2011.

Undaunted, Goldstein and his cohorts came right back. Earlier this spring, Goldstein found himself in front of the Senate Health Regulation Committee, engaged in a debate of sorts.

“Here’s this 17-year-old,” Goldstein said of himself, “going up against this long-time senator [Dennis Jones, 71].

“I wouldn’t say I was responsible [for the passing of the bill], but it exemplified that we were ready this time. We weren’t going to get outmaneuvered, and it ended up passing unanimously.”

Since the passing of the bill, student-athletes who want to play high school sports in Miami-Dade County must sign consent forms designed to educate them on concussions.

If an athlete is under suspicion of having a head injury, they must be removed from play, and they cannot return until a medical doctor clears them.

“This puts injured athletes in the proper hands,” Goldstein said.

Goldstein himself returned for his sophomore and junior seasons and is now a team captain.

“David’s a very good high school soccer player,” Villano said. “He’s not sure yet whether he will play college soccer, but he is an indomitable competitor. With his ability to inspire and organize, he is one of the best captains I’ve ever had.”

Villano said Goldstein’s impact will be felt long after he graduates from Ransom.

“In the old days, we as coaches had no awareness of what to look for in regards to a concussion,” Villano said. “We’d just ask a kid, ‘How many fingers?,’ and if he guessed right, they were right back on the field.

“Now we have a lot better idea of what to look for, thanks to David.”

For more information, please visit countywideconcussioncare.com

Athletes feeling impact of new concussion policies

Athletes feeling impact of new concussion policies

Football players undergo baseline testing and evaluation before resuming play

November 14, 2012
By Christy Cabrera Chirinos, Sun Sentinel

Cooper City football player Tyler Sabine took a brutal hit in a game early this season. The sophomore was throwing up just before halftime. His coaches knew it was time to pull the linebacker from the game.

Two days later, Sabine was diagnosed with a concussion.

That diagnosis kicked into place new guidelines passed by the Florida Legislature eight months ago, establishing strict procedures to allow concussed athletes, such as Sabine, back on the field.

As the high school and youth football seasons wrap up this month, many say the new law on concussion management is working.

Sabine was sidelined for more than two weeks before doctors cleared him to begin the gradual four-step return-to-play protocol now mandated by the Florida High School Athletic Association.

“Our trainers were amazing once they realized there was an issue,” said April Bourassa, Sabine’smother. “It was scary. It’s a brain injury, and it’s not like you have another one of those. But they’ve really made it to where now, you’re more informed and I love that. Everyone was very thorough. I felt like my son was being taken care of and informed.”

High school coaches and parents are being more hands-on about concussion awareness. Injured athletes are being evaluated by physicians, and sitting out as long as needed. Once medical clearance is given for them to return, athletic trainers are helping those athletes follow state guidelines that gradually manage a safe return to play.

“This is something that had to be dealt with,” said Archbishop McCarthy coach Byron Walker, who has seen one of his players, running back Nick Bost, sidelined with a concussion this season. “It takes it out of the hands of people who have an interest and puts it in the hands of professionals. It’s just going to be safe for the kids in the end.”

Bost, who was injured during spring practice, only recently returned to action after dealing with post-concussion syndrome months after his concussion.

“I knew it had to be done,” Bost said. “It may have been a mild concussion, but I wanted to be cautious and because I was still having symptoms, I held myself out. And my coaches were cool about it. They understood.”

Returning to action

The new law requires that if an athletic trainer or coach suspects an athlete has suffered a concussion, the athlete must be removed from play. And once an athlete has been diagnosed with a concussion, he or she cannot return to play until medically cleared by a physician.

Once that clearance is given, state policy dictates an athletic trainer supervises a four-step return-to-play protocol in which athletes see their activity level increase daily. If at any point in the process, an athlete exhibits concussion symptoms such as dizziness or sensitivity to light, they must wait at least 24 hours before attempting that level of activity again.

Youth football leagues across South Florida also are working to keep the youngest football players safe. Ross Sinel, president of the American Youth Football League, which includes teams from Broward, Palm Beach and Miami-Dade counties, said educating coaches and parents has been a major part of the league’s concussion management efforts.

And like high school athletes, no concussed AYFL athlete can return to play without a physician’s clearance.

“We had a clinic for our coaches with the doctors from the University of Miami, we have a policy where all coaches and parents have to sign off on concussion documents, and the AYFL has kept a database of all the concussed kids,” Sinel said.

In addition to the new state law which went into effect July 1, Broward County Schools have mandated baseline concussion testing for all high school athletes.

In Palm Beach County, more than 600 football players have participated in voluntary baseline testing.

All of that has helped lead to increased education and awareness of an often-misunderstood injury that if not treated properly, could have lasting effects on young brains.

“I think it’s all helping people do their jobs more effectively,” said Stephen Russo, the director of Sports Psychology at the Nova Southeastern University Sports Medicine Clinic. “The athletic trainers are overseeing the return-to-play protocol, the doctor is doing the medical approval, I’m doing what I’m trained to do and the coaches, at the end of the day, are doing what they’re trained to do. Everyone has their assigned roles in helping the athletes.”

Russo is working with the Broward County Athletic Association to carry out its baseline testing program. He estimates that this year, more than 50 athletes already have come to Nova’s Sports Medicine Clinic for post-concussion evaluation. In the entirety of the 2011-2012 school year, the clinic saw 101 cases.

At Cleveland Clinic in West Palm Beach where Dr. Evan Peck is helping Palm Beach County schools carry out its voluntary testing, there’s been an increase in patients, too.

High school athlete turns injury into crusade for better treatment of concussion injuries around state

High school athlete turns injury into crusade for better treatment of concussion injuries around state

Sunday, August 05, 2012
by Hal Habib

David Goldstein, shown speaking in Tallahassee, has fought to make it illegal for virtually any high school or youth league in Florida to allow a child to return to practice or play if he’s suspected of suffering a traumatic brain injury without first receiving written medical clearance. (Photo courtesy Countywide Concussion Care)

 

NOTE: This is the second in a two-part series.

Part 1: After son’s tragedy, S. Fla. mother strives to reduce football concussions in youths

 

The story of David Goldstein begins like many — make that too many — young athletes.

One concussion was followed by another, then a third. If they were scary, the way he handled them, in retrospect, was more frightening. He played two full soccer matches immediately following the second concussion because it was State Cup weekend in Wellington. He didn’t come out of the match following his third concussion because it was a high school district title match. He figured his team needed him.

Disconcerting as that is with what we know about concussions today, David Goldstein, 17, would be the first to say none of that makes his story unique. Kids suffer concussions every day, he points out.

No, what happened next does make Goldstein’s story unique.

First, he got better under the guidance of two University of Miami physicians who have become leading experts on such injuries.

Then, he got going. Convinced by doctors Gillian Hotz and Kester Nedd that baseline testing is an important tool in protecting athletes, he worked to make the test available at his school, Miami-Ransom Everglades. Next, recognizing that public schools in Miami-Dade County aren’t afforded the benefits that private schools enjoy, Goldstein decided to raise $20,000 to introduce the cognitive test to all public schools in Dade.

Still not enough.

Zeroing in on state laws, he fought to make it illegal for virtually any high school or youth league in Florida to allow a child to return to practice or play if he’s suspected of suffering a traumatic brain injury without first receiving written medical clearance. It also requires informed consent to play.

He’s also determined to make baseline testing standard throughout Florida even if it means working county by county, a push that likely helped inspire Palm Beach County schools this year to follow Dade and Broward’s lead.

To say Goldstein’s efforts went just as planned isn’t quite accurate. The bill he championed initially was defeated in the state legislature but his persistence was rewarded when Gov. Rick Scott signed it into law in April. David monitored passage of the bill via computer at school, success etched so clearly across his face that students he didn’t even know were high-fiving, hugging and applauding him. The vote was unanimous.

Oh, and he did not raise $20,000. He raised close to double that.

“My doctors’ motivation to help other people through their research kind of made me realize that I have an opportunity,” Goldstein says. “That I can be the face of local efforts and try to expand them because I’ve gone through it. I was willing to put my face out there. I was willing to go out and raise the money that no one else had time to raise.”

Marc Buoniconti, president of The Miami Project to Cure Paralysis, describes Goldstein as remarkable and selfless.

“David has just been a great ally in this initiative,” Buoniconti says. He works with Goldstein through The Miami Project’s KiDZ Neuroscience Center, which researches traumatic brain injuries because they’re closely associated to spinal cord injuries. “He’s so well-spoken and his story is so dramatic and so spot-on, that it just goes to show you a kid like David, a young kid, is just a great role model.”

Goldstein, whose family lives in Buoniconti’s former Coral Gables home, left an impression on Sen. Anitere Flores, R-Miami, who sponsored Goldstein’s bill. David sought to shed light on a dark, often confounding condition. He didn’t want other kids to experience the partial diagnoses, of being told to never play sports again, of needing to nap in the school nurse’s office because of headaches, fatigue and nausea — what he endured before meeting Hotz and Nedd.

“He recognizes that he is incredibly blessed with family support, and rather than sit back and say ‘good for me,’ he’s gone into communities locally and across the state advocating for what he knows will save lives,” Flores said via e-mail. “I can go on and on because David is that special. I’ll just end by saying that the world needs to keep an eye on David Goldstein because his talent and commitment is far from being exhausted!”

It hasn’t been without a price. Goldstein, a senior who is expected to be Ransom’s captain, is easily distinguishable on the field.

“I actually wear a rugby helmet when I play soccer now, which may not be the greatest fashion statement in the world, but it allows me to play the sport that I love,” he says.

Opposing fans, who have no idea what’s behind the helmet, make him a target.

“Some of the abuse I’ve heard would not be approved by the FCC — not even close,” he says. “I’ve heard some of the meanest things that I’ve ever heard in my life directed at me just for wearing a helmet. … Parents yelling ‘special ed’ at me. And you’ve just got to have the mental and emotional fortitude to realize that those people just don’t matter in your life.”

Cheryl Goldstein, his mother, admits it can be tough to hear.

“You look at this world and you look at how cruel people can be and I’m glad that David is tough enough, at least on the outside, to take it,” she says. “But it impacts him on the inside, as he’s human. I just hope that there’s a lesson in tolerance.”

Like Cheryl, David has testified before the state legislature.

“He felt comfortable to talk about it publicly, which is not something that a lot of children would be willing to do, because obviously he’s talking about problems that he had in his head,” says his father, Adam.

Flores says David not only caught on to the political process quickly, “he dominated it.” She adds, “He wouldn’t take no for an answer. He would fight half truths and misstatements from the other side with facts and figures in a methodical way.”

Adam Goldstein is president and CEO of Royal Caribbean International, but even though a cruise was the grand prize in a drawing that raised the initial $8,000 at Ransom-Everglades, Adam and Cheryl had David go through standard channels to obtain that donation.

“I admit that we are fortunate to know people who have the means to make contributions and who certainly are charitable in other areas of life, but he needed to sit down with every person who contributed to him and explain in person — without us there — what he was doing, why he was doing it and to ask them for money,” Adam says.

David: “It’s definitely a welcome-to-the-real world experience. Usually when I’m talking to adults, in a sense, I’m asking them for help on my homework. I’m not asking them for as much money as they’re willing to give me.”

Nervous? Not really. His cause “almost gave the people I was asking for money no choice” but to help, he says. “When you have passion about anything, it’s an invaluable tool.”

Goldstein, an A student in honors classes, hopes to attend Princeton, his father’s alma mater, and perhaps someday coach. He says until he meets with those who have backed him, he’s unsure of his next steps in the concussion fight … yet in the next breath, he rattles off that he must make sure Dade’s baseline program is self-sufficient for when he leaves for college. He’s got to continue educating coaches, parents and athletes. He has youth organizations to get onboard. Work on his site, countywideconcussioncare.com. Et cetera.

“Kids are getting concussions today,” he says. “They’ll be getting concussions tomorrow. They’ve gotten concussions yesterday. In Florida. All over the country. All over the world. And they don’t know who to turn to.

“They’re going back into the game too early. Second-impact syndrome is happening. People are researching more about CTE — these tragedies keep occurring in NFL players. There’s still more work to be done.

“I’m very happy with what I’ve been able to do but I’m not done and don’t intend to be for a while.”

Says Buoniconti: “I would watch that kid in the future.”